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We study both theoretically and experimentally switching dynamics in asymmetric surface stabilized ferro-
electric liquid crystal cells where the bounding surfaces are treated differently to produce asymmetry in their
anchoring properties. Our electro-optic measurements of the switching voltage thresholds, V+ and −V−, that are
determined by the peaks of the reversal polarization current reveal the frequency dependent shift of the
hysteresis loop, V+−V−. We examine the predictions of the uniform dynamic model with the anchoring energy
taken into account. It is found that the asymmetry effects are dominated by the polar contribution to the
anchoring energy. Frequency dependence of the voltage thresholds is studied by analyzing the properties of
time-periodic solutions to the dynamic equation �cycles�. For this purpose, we apply the method linking the
cycles and the fixed points of the composition of two parametrized half-period mappings for the approximate
model. It is found that the cycles are unstable and can only be formed if the driving frequency is lower than its
critical value. The polar anchoring parameter is estimated by making a comparison between the results of
modeling and the experimental data for the shift vs frequency curve.
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I. INTRODUCTION

As it was shown by Meyer et al. in 1975 �1�, the origin of
ferroelectric ordering in smectic-C* �Sm-C*� liquid crystals
with the spontaneous polarization normal to the tilt plane is
closely related to the reduction of symmetry caused by
chirality of the tilted Sm-C* phase. This phase is thus natu-
rally ferroelectric and the Sm-C* liquid crystals are also
known as the ferroelectric liquid crystals �FLC� �a detailed
description of FLCs can be found, e.g., in a collection of
reviews �2� and in more recent monographs �3,4��.

Over the past three decades FLCs have attracted consid-
erable attention not only as a vital issue in the condensed
matter physics but also as promising materials for applica-
tions in electro-optic switching devices. The first such device
was due to Clark and Lagerwall �5�. They studied the
electro-optic response of FLC cells confined between two
parallel plates subject to homogeneous boundary conditions
and made thin enough to suppress the bulk chiral Sm-C*

helix. It was found that such cells—the so-called surface-
stabilized ferroelectric liquid-crystal �SSFLC� cells—exhibit
high-speed, bistable electro-optical switching between orien-
tational states stabilized by surface interactions.

The response of chiral Sm-C* liquid crystals to an applied
electric field is characterized by fast switching times due to
linear coupling between the field and the spontaneous polar-
ization. There is also a threshold voltage necessary for

switching to occur and the process of bistable switching is
typically accompanied by a hysteresis. The switching times
and the threshold voltages may considerably vary depending
on the wave form, the amplitude, and the frequency of ap-
plied �driving� voltages.

In early studies �6–9�, it was found that the competition
between elastic, electrostatic, and surface energies may result
in different regimes of switching and field induced transi-
tions in FLC cells. Certain regimes such as the high voltage
regime can be described using the theoretical approach based
on the assumption that the director and polarization fields are
spatially homogeneous. This approach provides a number of
uniform switching models where the effects of electrostatic
and surface interactions are incorporated into an effective
potential governing the dynamics of switching. Such models
can be readily applied to interpret experimental data.

In particular, the uniform model of switching supple-
mented with an elasticlike term was examined in �10� and
applied to describe experimental behavior of the polarization
reversal current in SSFLC cells. Similarly, the uniform
theory was employed to determine the rotational viscosity
and the anchoring energy strength from the experimental re-
sults on the response time measured as a function of pulse
voltage in a SSFLC cell �11�. The field-reversal method sug-
gested in �12� to measure the spontaneous polarization, the
switching time, the rotational viscosity, and the dc conduc-
tivity also relies on the uniform model. �Recent discussions,
applications, and generalizations of uniform models can be
found, e.g., in �13–16�.�

In this paper we are aimed to study the effects of surface
anchoring energy in switching dynamics of asymmetric SS-

*kiselev@iop.kiev.ua
†eechigr@ust.hk

PHYSICAL REVIEW E 75, 061706 �2007�

1539-3755/2007/75�6�/061706�15� ©2007 The American Physical Society061706-1

http://dx.doi.org/10.1103/PhysRevE.75.061706


FLC cells where nonidentical aligning films impose different
boundary conditions at the substrates. The effect of our par-
ticular concern is the frequency dependent shift of the hys-
teresis loop observed in our experiments.

In the theoretical part of the paper, we adapt a systematic
approach and examine predictions of the uniform theory
where the effects of asymmetry are caused by the polar con-
tribution to the anchoring energy potential. The voltage
thresholds are studied in relation to the driving frequency by
using the method suggested to explore the properties of time-
periodic solutions to the dynamic equation representing pe-
riodic regimes of switching. In the theory of dynamical sys-
tems such solutions are variously known as the periodic
orbits or the cycles �17,18�.

The layout of the paper is as follows. In Sec. II we derive
the effective potential and formulate the model. The simpli-
fied case with the anchoring energy neglected is discussed so
as to clarify the assumptions taken to obtain frequency de-
pendent threshold voltages.

Analysis of the switching dynamics is performed in Sec.
III. We present the approach that uses the parametrized half-
period mappings for the approximate model to study the
time-periodic solutions of the dynamic equation as the fixed
points of the composition of two half-period mappings. In
the case of square wave voltages the method is applied to
derive analytical relations for the conditions of complete
switching, the switching times, and the critical frequency
bounding the region of cycles from above. We show that, for
sinusoidal and triangular wave forms, behavior of the half-
period mappings is similar to that for the square wave volt-
age and the results remain qualitatively unchanged.

Experimental details and the results of electro-optic mea-
surements for the switching voltage thresholds are given in
Sec. IV. The experimental data and the theoretical results of
Sec. III are used to model the process of switching and to
estimate the polar anchoring parameter. Finally, in Sec. V we
present our results and make some concluding remarks.

II. MODEL

In this section we introduce necessary notations and de-
scribe the model that takes into account the effects due to
aligning films. The equation of motion governing switching
dynamics in asymmetric SSFLC cells is derived and the
asymmetry induced polar contribution to the anchoring en-
ergy is found to play an important part in the problem. We
also discuss applying the simplified model to describe the
frequency dependence of the switching voltage thresholds.

A. Free energy

We consider the FLC cell with a planar arrangement of
planar smectic layers usually referred to as the bookshelf
geometry. This geometry is schematically presented in Fig.
1. It is characterized by the director field

n̂ = ẑ cos � + sin ��x̂ cos � + ŷ sin ��, k̂ = ŷ , �1�

where � is the molecular cone angle, � is the azimuthal angle

around the smectic cone, k̂ is the outward �inward� normal to

the upper �lower� substrate of FLC cell, y=d /2 �y=−d /2�,
and d is the cell thickness.

The vector of the polarization, P, and the electric field
inside the cell, E, are given by

P = PSp̂, p̂ = ŷ cos � − x̂ sin �, E = Eŷ , �2�

where PS is the spontaneous ferroelectric polarization. The
external driving voltage

V�t� = Vmv�t� �3�

is characterized by the amplitude Vm, the frequency f =1/T �
T is the period�, and the T-periodic function of time v�t�
describing the wave form of the applied voltage.

For sinusoidal �sine-wave� driving voltages, the wave-
form function v�t� is

vsine�t� = sin��t�, � = 2�/T , �4�

whereas T-periodic continuations of the functions vtriang�t�
and vsquar�t�:

vtriang�t� = �4t/T , 0 � t/T � 1/4,

2 − 4t/T , 1/4 � t/T � 3/4,

4t/T − 4, 3/4 � t/T � 1,
� �5�

vsquar�t� = �1, 0 � t/T � 1/2,

− 1, 1/2 � t/T � 1,
� �6�

give the wave-form functions for the triangular and the
square-wave forms, respectively.

Similar to nematic liquid crystals �NLC�, when a FLC
layer is brought into contact with aligning substrates, the

y = −d/2

y = d/2

E

z

y

x

P
φ

n

FIG. 1. �Color online� Schematic representation of bookshelf
geometry illustrating the planar arrangement of smectic layers. The
polarization vector lies in the x−y plane and � is the azimuthal
angle around the smectic cone. External electric field is directed
along the y-axis normal to the boundary surfaces, y=−d /2 and y
=d /2.
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energy of the FLC molecules in the interfacial layer and thus
the surface tension will be orientationally dependent. The
anisotropic part of the surface tension—the so-called anchor-
ing energy—gives rise to the phenomenon known as anchor-
ing, i.e., surface induced alignment of the FLC director along
the vector of preferential orientation referred to as the easy
axis.

The phenomenological expression for the anchoring en-
ergy can be written as a linear combination of the invariants

constructed from the surface normal, k̂, the FLC director, n̂,
and the unit polarization vector p̂. For FLC cells, this gives
the anchoring energy expressed in terms of the scalar prod-

ucts �n̂ · k̂� and �p̂ · k̂� as follows:

Wanch = 	
�=±1


W�

2
�n̂ · k̂�2 + �W�

�P��p̂ · k̂��
y=�d/2

, �7�

where W+ �W−� is the strength of nonpolar anchoring at the
upper �lower� substrate; similarly, W+

�P� and W−
�P� is the polar

anchoring strength at the upper and lower substrate, respec-
tively.

The first term in square brackets on the right-hand side of
Eq. �7� represents the Rapini-Papoular surface potential �19�
preserving equivalence between n̂ and −n̂. This equivalence,
however, can be broken due to effects of polar ordering in
the interfacial layer �20,21�.

As opposed to the case of nematic liquid crystals, where
the effects of surface induced polarity are mainly caused by
the quadrupole-dipole interaction �22,23�, it might be ex-
pected that in FLCs the dominating factor is the electrostatic
interaction of the spontaneous polarization P with the surface
charges or dipoles. So, the polar anchoring term on the right
hand side of Eq. �7� is taken to be proportional to �p̂ ·k�. This
introduces dependence on the polarity of the polarization re-
sulting from the ferroelectric polar surface interaction
�8,24,25�. There is also the elastic term describing the effect
of spontaneous bend which is of the divergence form and can
be considered as an additional contribution to the polar term
�25,26�.

When the director field �1� is spatially homogeneous, the
anchoring energy �7� takes the simplified form

Wanch =
W

2
sin2 � − WP cos � , �8�

where W= �W−+W+�sin2 � and WP=W−
�P�−W+

�P�. From Eq.
�8� it is seen that, for symmetric cells with W−

�P�=W+
�P�, the

polar terms add to zero. In asymmetric FLC cells, the polar
anchoring parameter, wp=WP /W, is generally nonvanishing.

In Fig. 2, the potential �8� is plotted in relation to the
azimuthal angle �. It is illustrated that there are two local
minima: �=0 �the up state with p��p̂ ·k�=cos �= +1� and
�=� �the down state with p=−1�. At wp�0, the minima are
not energetically equivalent and one of the minima repre-
sents the metastable state. In addition, it is not difficult to
obtain the relation

wp = WP/W � 1 �9�

as the condition for the configurations with �=0 and �=� to
be metastable. If the metastability condition �9� is broken the
anchoring potential has only one minimum. Similar results
were previously reported in Refs. �15,27� and the effects of
asymmetry induced by the polar anchoring in switching dy-
namics will be our primary concern. Throughout the paper
we shall assume that the up and down states are both meta-
stable in the absence of external fields and the condition �9�
is satisfied.

In general, the polar anchoring energy is known to be of
considerable importance in the understanding of static and
dynamical behavior of chiral smectics in confined geom-
etries. For example, it may lead to the discontinuous Fréed-
ericksz transitions �7,8� and is found to give rise to the sur-
face electroclinic effect �28,29�. The magnitude of the polar
anchoring strength was also estimated from the experimental
data on the static dielectric susceptibility, the voltage coer-
civity, and the relaxation time �30�.

In an antiferroelectric liquid crystal cell, where the polar
anchoring induces ferroelectric ordering close to the bound-
ing surfaces, it may result in a coexistence of multiple zero-
voltage ground states �31�. For SSFLC cells, the effects of
the polar anchoring energy were recently studied in the con-
text of theoretical investigations into the so-called “thresh-
oldless” or “V-shaped” switching mode of the optical re-
sponse to an applied voltage �27,32,33�. In particular, it was
found that monostable structures exhibiting the V-shaped
switching can be formed as a result of the polarization charge
self-interaction accompanied by the effects of the insulating
alignment layers.

So, we briefly discuss a simple double-layer model where
FLC is assumed to be sandwiched between two nonidentical
insulating layers. The starting point is the standard expres-
sion for the electrostatic part of the FLC free energy per unit
area
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FIG. 2. �Color online� Anchoring energy as a function of the
azimuthal angle � at various values of the polar anchoring param-
eter wp�Wp /W.
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FE/A = �
−d/2

d/2

fEdy, fE = − �0�yyE
2/2 − PyE , �10�

where A is the area of the substrates, �0=8.854
	10−12 F m−1 is the permittivity of free space, and �ij
=��
ij + ��� −���ninj is the FLC dielectric tensor.

Then we neglect the conductivity of FLC and use the
boundary conditions for the normal component of the elec-
tric displacement field, Dy, to obtain the relations

�0�yyE + Py = �0�1E1 = �0�2E2 = Dy , �11�

where �1 ��2� is the dielectric constant of the lower �upper�
insulating layer and Ei is the electric field inside the layers.
The voltage applied across the cell is given by

V � V�− d/2 − d1� − V�d/2 + d2� = E1d1 + E2d2 + �
−d/2

d/2

Edy ,

�12�

where di is the thickness of the layers.
We can now use Eq. �11� to eliminate the electric fields,

E1 and E2, from the expression �12� and relate the electric
displacement field to the external electric field, E0, as fol-
lows:

V/d � E0 = �Dy/�0 + �E�, � = �d1/�1 + d2/�2�/d , �13�

where �¯�=d−1�−d/2
d/2

¯dy. This result can now be combined
with the relation �11� to yield the expression for the electric
field inside the FLC layer

E =
�0E0 − �Py + �Py�yy

−1� − Py��yy
−1�

�0�yy���yy
−1� + ��

. �14�

For a uniform director distribution, Eq. �14� can be sim-
plified giving the relation

E =
E0 − �Py/�0

1 + �yy�
�15�

recently obtained in Ref. �34� for the case of identical sub-
strates. Evidently, this relation implies that the electric field
inside the FLC layer, E, deviates from the applied electric
field, E0, due to the presence of the aligning substrates. Ac-
cording to Refs. �33,35�, this effect plays an important part in
describing the V-shaped switching mode.

Alternatively, Eq. �15� can be used to introduce the effec-
tive electrostatic free energy

2feff = − �1 + ��yy�−1��0�yyE0
2 + 2E0Py − �Py

2/�0� , �16�

which is defined so as to meet the condition

−
�fE��,E�

��
=

��yy

��
�0E2/2 +

�Py

��
E = −

�feff��,E0�
��

�17�

expressing equivalence of the torques computed from the
free energy �10� and the effective energy �16�. The last term
in the square brackets on the right-hand side of Eq. �16�
represents the energy of self-interacting polarization charges.

Now we neglect the dielectric anisotropy of FLC, �yy
��FLC=��, and consider the energy

F � fd = feffd + Wanch �18�

defined as the sum of the effective electrostatic and anchor-
ing energies. After substituting Eqs. �8� and �16� into the
energy �18�, it can be seen that there are two effects caused
by the aligning layers: �a� reduction of the applied electric
field: E0→ �1+��FLC�−1E0, and �b� renormalization of the
nonpolar anchoring strength induced by the polarization self-
interaction: W→W−��1+��FLC�−1�0

−1PS
2. The latter is the

effect that may break the metastability condition �9� and give
rise to monostable structures exhibiting the thresholdless
switching �27,32�. Since such a possibility as well as the
V-shaped switching is beyond the scope of this paper, we
shall use the energy �18� without changing notations for the
renormalized values of E0 and W.

The simple model of switching dynamics in FLC cells can
be formulated in terms of the energy �18� which enters the
dynamic equation for the azimuthal angle

�
��

�t
= −

�f

��
, �19�

where � is the rotational viscosity for reorientation on the
smectic cone. The model is based on the assumption of a
spatially uniform director field that implies neglecting elas-
ticity effects along with the coupling between the fluid flow
and the director.

Such uniform theory suggests applying the viscosity-
limited dynamics to the switching process in SSFLC cells.
The simplest case where the anchoring energy is disregarded
was originally considered in �5,6� �see, e.g., �36� for a re-
view�. An attempt to fit experimental data using this simpli-
fied model was recently made in �16�.

Subsequently, various modifications of the model such as
including an effective elasticlike term �10� and the anchoring
energy �11,30,33� have been employed to interpret experi-
mental results. The approach to grey levels in FLC displays
based on the uniform theory is presented in �15�.

In our case there are two characteristic time scales,

tW =
�d

W
, tE =

�d

PSVm
, �20�

and the governing equation �19� can be written in the follow-
ing explicit form:

��

�
= − �r�� + cos � + wp�sin � , �21�

 = t/tW, r�� = rev�� , �22�

where re= tW / tE= PSVm /W is the driving voltage parameter.
Note that rescaling of time renormalizes the period of the
wave-form function v��: T→Tw=T / tW.

Equation �21� presents the simplest model that can be
used to study the effects of asymmetry induced by the polar
anchoring energy. Our main interest is with the characteris-
tics of the hysteresis loop depicted in Fig. 3.

Referring to Fig. 3, the location of the peaks of the polar-
ization reversal current is determined by two switching volt-
age thresholds, V+=Vmv+ and V−=−Vmv−, where v± is the
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dimensionless switching voltage parameter, characterizing
the hysteresis loop for the normalized polarization �polariza-
tion parameter�, p= Py / PS=cos �. Equivalently, the width
and the shift of the loop can be conveniently described by the
dimensionless �normalized� voltage parameters

vc = v+ + v−, vsh = v+ − v−, �23�

where vc is the voltage coercitivity and vsh is the voltage
shift.

If wp=0, the dynamic equation �21� is invariant under the
symmetry transformation: r→−r �→+Tw /2� and �→�
−� �p→−p�. Under these circumstances, the hysteresis loop
is symmetric and the voltage shift vanishes, vsh=0. This is no
longer the case when wp�0 and the symmetry is broken. For
the cell driven by the sine-wave voltage at wp=0.2, the
curves representing temporal evolution of the polarization
parameter, p, and its time derivative are shown in Fig. 4.

B. Switching voltages vs frequency: Simplified model

It is instructive to examine first predictions of the ex-
tremely simple model in which the terms describing the an-
choring energy �8� are disregarded and dynamics of the azi-
muthal angle � is governed by the simplified equation of
motion

�
��

�t
= − PSE0v�t�sin � . �24�

Our task is to study the switching voltages as functions of the
driving voltage frequency, f =1/T. We shall perform analysis
of the model �24� in the form suitable for subsequent gener-
alization and clarify the assumptions underlying the results
previously reported in Refs. �37,38�.

We start with introducing an auxiliary angular variable u
linked to the azimuthal angle through the relations

2u = ln�1 + cos �

1 − cos �
�, cos � � p = tanh�u� �25�

and governed by the equation �u=v��, where = t / tE. The
latter immediately gives the normal component of the polar-
ization vector, Py, evolving in time as follows:

Py�� = PS cos ��� = PS tanh�u��� , �26�

u�� = − u0 + w�� = − u0 + �
0



v���d�, �27�

where the initial condition cos ��0�=−tanh u0 with u0�0
means that the cell is initially in the down state.

In order for the polarization �26� to be periodic in time the
condition w�Te�=0, where Te=T / tE, must be fulfilled. It is
not difficult to see that, for bipolar switching with the wave-
form functions �4�–�6�, this periodicity condition is satisfied.

From Eq. �27� the angular variable u monotonically in-
creases from −u0 to u+=−u0+w�Te /2� over the first half-
period. Complete switching occurs when cos �0=−tanh u0
�−1 and cos �+=tanh u+�1. During the switching process
the polarization increases �decreases� passing zero at the in-
stant of time + �−�. So, the switching voltage parameters,
v+ and v−, can be defined as follows:

v± = ± v�±�, u�±� = 0. �28�

For sine-wave and triangular voltages, the switching voltages
�28� are given by

v±
�sine� = �u0�e�2 − u0�e�, u0�e � 1, �e = 2�/Te,

�29�

v±
�triang� = ��8u0/Te, 0 � u0/Te � 1/8,

�2 − 8u0/Te, 1/8 � u0/Te � 1/4.
� �30�

It would appear natural that the polarization in the up and
down states is of the same magnitude but differs in sign. In
this case, the parameter u0,
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FIG. 3. �Color online� Hysteresis loop.
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FIG. 4. �Color online� Normalized polarization and polarization
reversal current evolving in time under sine-wave driving voltage at
wp=0.2, Tw=0.8, and re=50. Solid lines represent the results ob-
tained by solving Eq. �21� numerically. Analytical results �dashed
lines� are computed using the piecewise linear approximation �36�.

SWITCHING DYNAMICS OF SURFACE STABILIZED… PHYSICAL REVIEW E 75, 061706 �2007�

061706-5



2u0 = w�Te/2� , �31�

is fixed by the symmetry condition cos �+=−cos �0�u+=u0�.
Since wsine�Te /2�=2/�e and wtriang�Te /2�=Te /4, we are led
to the conclusion that the switching voltages are frequency
independent and v±

�sine�=v±
�triang�=1.

As a way around this difficulty, we can apply a cutoff
procedure where the equilibrium states are regarded as “satu-
rated” states characterized by the cutoff parameter us,
tanh us�1. The result is that the relation between the angular
and polarization parameters takes the modified form

cos � = �tanh u , u � us,

sign�u�tanh us � ± cos �s, u � us
� �32�

and the parameter u0 is now given by

2u0 = �w�Te/2� , Te � Ts,

2us = w�Ts/2� , Te � Ts.
� �33�

From Eq. �33� it can be seen that the cutoff parameter us
determines the boundary frequency, fs=1/Ts, separating the
regions of low and high frequencies. In the low frequency
regime with fe=1/Te� fs, the switching voltage parameters
are given by

v±
�sine� = ��2 − �e/�s��e/�s, v±

�triang� = �fe/fs, �34�

where �s=2�fs.
Similar to the switching voltages, the switching time pa-

rameters, + /Te and − /Te, are frequency independent,
+ /Te=1−− /Te=1/4, at fe� fs for all three wave forms
�4�–�6�. For the square-wave driving voltage of low fre-
quency, these parameters assume linear dependence on the
frequency: + /Te=1−− /Te= fe / �4fs�.

III. SWITCHING DYNAMICS

From the analysis presented in Sec. II B it can be inferred
that the properties of switching dynamics are predominately
determined by a certain class of time-periodic solutions to
the governing equation. Specifically, we have used the sym-
metry condition p+=−p−, where p+ �p−� is the polarization
parameter of the up �down� state, in combination with the
cutoff procedure.

Now we pass onto the model �21� and study how the
anchoring energy influences the dynamics of switching. As
in the preceding section, our attention will be focused on the
frequency dependence of the switching voltages in the re-
gime of complete switching.

By contrast to Eq. �24�, the dynamic equation �21� is gen-
erally not exactly solvable. Additional difficulties emerge as
far as analysis of the solutions describing the switching pro-
cess is concerned. These solutions need to be periodic in
time and will be referred to as the cycles. As we shall be
seeing later in this section the very existence of cycles does
not follow from Eq. �21� immediately and the periodicity
conditions may require somewhat involved considerations.

In this section we present an analytical approach to study
the cycles based on approximating the dynamic equation for
the angular variable u defined in Eq. �25�. By applying this

method, the case of square wave voltages can be treated
analytically, whereas a relatively simple numerical analysis
is needed for other wave forms.

As a first step, we shall write the equation for the angular
variable u,

�u

�
� u̇ = tanh�u� + �r�� + wp�, p � cos � = tanh�u� ,

�35�

deduced from Eq. �21� by using Eq. �25� to make the change
of variables: �→u. Then we apply the piecewise linear ap-
proximation for the hyperbolic tangent

tanh�u� → L�u� = �u , u � 1,

sgn�u� , u � 1
� �36�

and obtain the approximate dynamic equation

u̇ = L�u� + �r�� + wp� �37�

that will be the starting point for our subsequent consider-
ations.

Equation �37� retains the symmetry of Eq. �35� discussed
at the end of Sec. II A. It can be readily checked that the
transformation

 →  − Tw/2, u → − u, wp → − wp �38�

keeps both of these equations intact.
It turned out that, as far as the cycles are concerned, the

numerical results computed from Eq. �35� and the predic-
tions of the approximate model �37� are essentially the same.
In our calculations the relative error was found to be well
below 0.1%.

Accuracy of the approximation is demonstrated in Fig. 4.
It is seen that the difference between the solid and dashed
lines becomes noticeable only with a rise in numerical inte-
gration error as the interval of integration increases.

As in Sec. II B, suppose that the cell is initially in the
down state with u�0�=−u0 and u0�1. After the first half-
period time, the external voltage drives the cell into the up
state with u�Tw /2�=u+. This process might be called switch-
ing up and we consider it complete if u+�1. Analogously,
complete switching down takes place over the second half-
period time when the cell goes from the up state with
u�Tw /2�=u+ to the down state with u�Tw�=−u− and u−�1.

Mathematically, this can be described in terms of the half-
period mappings

�+: u0 = − u�0� � u+ = u�Tw/2� ,

�−: u+ = u�Tw/2� � u− = − u�Tw� , �39�

where �+ and �− are determined by temporal evolution of
the angular variable u over the first and second half-period,
respectively.

Owing to the symmetry �38�, �− can be obtained from �+
by changing the sing of the polar anchoring parameter wp.
So, in the subsequent section, we concentrate on the half-
period mapping �+.
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A. Half-period mappings and cycles

We restrict ourselves to the first half-period and study in
detail how the angular parameter u evolves in time. For com-
plete switching up, the solution can be written in the follow-
ing general form:

u�� = �F0�� ,  � 0,

F�� , 0 �  � 1,

F+�� , 1 �  � Tw/2,
� �40�

where 0�0�1�Tw /2 are defined by the conditions

u�0� = − 1, u�1� = 1. �41�

It is not difficult to solve Eq. �37� and derive the explicit
formulas for the functions that enter the solution �40�. The
result is

F0�� = − u0 + �wp − 1� + R0�� , �42�

F�� = exp� − 0��wp − 1� − wp + exp���R�0� − R��� ,

�43�

F+�� = 1 + �wp + 1�� − 1� + R0�� − R0�1� , �44�

where

R0�� = �
0



r���d�, R�� = − �
0



exp�− ��r���d�.

�45�

From Eqs. �40�–�44� the half-period mapping �+ from u0
to u+ can be derived in the parametrized form

�+: u0 − 1 = G0�0� = �wp − 1�0 + R0�0� , �46a�

u+ − 1 = G+�1� = �wp + 1��Tw/2 − 1� + R0�Tw/2� − R0�1� ,

�46b�

g−�0� = g+�1�, g±�� = exp�− ��wp ± 1� + R�� ,

�46c�

where the parameters 0 and 1 are defined by the two con-
ditions �41�. The first condition u�0�=F0�0�=−1 and the
relation u�Tw /2�=F+�Tw /2�=u+ give u0 and u+ as a function
of 0 and 1, respectively �see Eqs. �46a� and �46b� for the
corresponding expressions�. The parameters 0 and 1 are
coupled through Eq. �46c� which is an immediate conse-
quence of the second condition from Eq. �41�: u�1�=F�1�
=1.

Changing the sign of wp in Eqs. �46a�–�46c� gives the
formulas for the half-period mapping �−. Composition of
the two mappings

� = �− � �+, �− = �+wp→−wp
�47�

relates the values of u at the end points of the period: u�0�
=−u0→u�Tw�=−u−.

From the periodicity condition u0=u− it follows that, for
cycles, u0 is the fixed point of �. So, we have the fixed point
equations

��q−
�st�� = q−

�st�, q−
�st� � u−

�st� − 1 = u0
�st� − 1, �48a�

�+�q−
�st�� = q+

�st� � u+
�st� − 1 �48b�

characterizing the up and down states of the cycle. The fixed
point then can be found by solving Eq. �48a�. It provides the
polarization parameter for the down state of the cycle: p−

�st�

=−tanh u−
�st�, whereas Eq. �48b� gives u+

�st� and the polariza-
tion parameter of the up state: p+

�st�=tanh u+
�st�.

Given the cycle Eqs. �35�–�45� with u0=u−
�st� yield u�� for

switching up during the first half-period, 0��Tw /2. The
reversal polarization current reaches a maximum at the in-
stant of time + where p̈�+�=0.

For the second half-period time, Tw /2��Tw, Eqs.
�35�–�45� with u0=u+

�st� and wp→−wp give −u�−Tw /2�. The
current is now peaked at =Tw /2+−. From the condition
p̈=0 and Eq. �35� we can derive the equations for + and −

u̇�±��2u̇�±�tanh u�±� − 1� � u̇�±��2u̇�±�u�±� − 1� = ṙ�±� ,

�49�

u̇�±� = u�±� + �r�±� ± wp� , �50�

where 0�±�Tw /2, u�+�=F�+�, and u�−�= F�−�wp→−wp
.

Then the switching voltages are given by

r± = ± r�±� = ± rev±, �51�

where v±=v�±� is the switching voltage parameter.

B. Square wave voltage

Analytical results of the preceding section depend on the
wave form through the functions defined in Eq. �45�. The
case of square wave voltages can be treated by replacing wp
with wp+re and setting R0 and R equal to zero. The result for
the functions that enter the half-period mappings �see Eqs.
�46a� and �46b�� and the coupling equation �46c� is

�±: G0 = �±wp + re − 1�0, �52a�

G+ = �±wp + re + 1��Tw/2 − 1� , �52b�

1 = 0 + �± = 0 + ln �±, �± =
re ± wp + 1

re ± wp − 1
. �52c�

By using Eqs. �52a�–�52c� along with the formulas �46a� and
�46b� the parameters 0 and 1 can be eliminated to yield the
half-period mappings, �+ and �−, as the linear functions
given by

q+ = �+�q0� = �+ − �+q0 � q1
�+��1 − q0/q0

�+�� , �53a�

q− = �−�q+� = �− − �−q+ � q1
�−��1 − q+/q0

�−�� , �53b�

where qi�ui−1 and

q1
�±� � �± = �±wp + re + 1��Tw/2 − �±�, q0

�±� = �±/�±.

�54�

Now that the expressions for the half-period mappings are
derived we can discuss some of the most important conse-
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quences. The regime of complete switching that occurs when
the parameters q0=u0−1, q+=u+−1, and q−=u−−1 are all
positive is the first point to address.

From Eq. �52a� the parameter q0=G0�0� is positive at
0�0 only if the driving voltage parameter, re= PSVm/W,
exceeds its threshold value:

re � 1 + wp . �55�

Similarly, it can be seen from Eqs. �53a� and �53b� that the
parameters q+ and q− cannot be positive when q1

�±� is nega-
tive. The latter and Eq. �54� give the inequality

Tw � Tmin = 2 max��+,�−� = 2 ln
re − wp + 1

re − wp − 1
�56�

that bounds the driving frequency 1/Tw from above.
The complete switching conditions �55� and �56� define

the thresholds for the amplitude and the period of the applied
voltage, so that the switching is incomplete below these
thresholds; but, in general, these conditions will not suffice
for either completeness or periodicity of the switching re-
gime. In other words, more stringent constraints are required
to ensure that the composition of mappings �47� has fixed
points describing the cycles.

In our case, the mapping �=�− ��+: q0→q− is linear
and the parameter q0 varies in the range from zero to q0

�+�.
The fixed point exists only if the function q−��q� takes the
values of opposite sign at the end points of the interval
�0,q0

�+��: q=0 and q=q0
�+�. Since ��0�= �q0

�−�−q1
�+��q1

�−� /q0
�−�

and q0
�+�−��q0

�+��=q0
�+�−q1

�−�, the fixed point condition ��0�
	�q0

�+�−��q0
�+����0 can be conveniently written as the in-

equality

P+P− � 0, P± = q0
�±� − q1

���, �57�

where the parameters q0
�±� and q1

�±� are defined in Eq. �54� and
linearly depend on Tw.

It can be shown that P+ and P− are both negative in the
region where the cycles come into play. For this region of
cycles, we have

P± � 0 at Tw � Tc, �58�

where Tc is the critical period given by

Tc = ln
�re + 1�2 − wp

2

�re − 1�2 − wp
2 + re�1 − wp�−1 ln

re
2 − �1 − wp�2

re
2 − �1 + wp�2 .

�59�

Thus there are no cycles in the high frequency region above
the critical frequency 1/Tc.

According to estimates that will be discussed in Sec. IV,
the voltage parameter re is typically much larger than unity
and the asymptotic expression

Tc � 4�1 − wp�−1re
−1 �60�

can be used as a good approximation for the critical period
�59� in the region of high voltage parameters where re�10.
Clearly, Tc declines as the voltage amplitude increases,
whereas the critical period becomes divergent when the mag-
nitude of the polar anchoring parameter approaches unity.

The curves depicted in Fig. 5 illustrate these effects and ac-
curacy of the high voltage approximation.

An important point is that, under the condition �58�, the
derivative of �, ���q�=q1

�+�q1
�−��q0

�+�q0
�−��−1, is greater than

unity. Therefore the fixed points and the cycles are unstable.
Note that stability of the cycles requires both P+ and P− to be
positive.

For the half-period mappings of the form �53a� and �53b�,
it is straightforward to deduce the expressions for the param-
eters q+

�st� and q−
�st�,

q±
�st� =

�± − �±��

1 − �+�−
=

q1
�±�q0

���P±

q0
�+�q0

�−� − q1
�+�q1

�−� , �61�

that characterize the up and down states of the cycles. Solv-
ing Eq. �49� gives the switching time parameters + and −,

± = q�
�st�/�re ± wp − 1� + 
±, �62�


± = ln
re ± wp + ��re ± wp�2 + 2

2�re ± wp − 1�
, �63�

that determine location of the reversal current peaks in time
during the first and second half-period �switching up and
down�. The formulas

u±
�st� � Tw�1 � wp��re − �1 ± wp�2re

−1�/4 + 2�1 ± 2wp�re
−2/3,

�64�

± � Tw�1 ± wp��1 + �1 � wp�re
−1�/4 � 4wpre

−3/3 �65�

describe asymptotic behavior of u±
�st� and ± in the region of

high voltage parameters where re�10.
As is expected from the symmetry �38�, we have u+

�st�

=u−
�st� and +=− in the limit of nonpolar anchoring with

wp=0. This is also the case where the difference between the
critical period Tc and the threshold period of complete
switching Tmin disappears.
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FIG. 5. �Color online� Critical period as a function of �a� polar
anchoring parameter, wp=Wp /W and �b� driving voltage parameter,
re= PSVm/W, for the square wave voltage. Thin dashed lines repre-
sent the results computed from the asymptotic formula �60�.
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Interestingly, at wp=0, the leading term of the asymptotic
expansion �64� �the first term in the square brackets on the
right-hand side of Eq. �64�� can be derived from the symme-
try condition �31� discussed in Sec. II B. More generally,
Eqs. �64� and �65� indicate that, quite similar to the high
frequency regime considered in Sec. II B, the parameters
u±

�st� /Tw and ± /Tw are almost frequency independent having
only a weak linear dependence on the frequency 1/Tw.

The effects of the polar anchoring induced asymmetry
depend on the polarity determined by the sign of wp. At the
critical point with Tw=Tc and wp�0 �wp�0�, we have
P+�Tc�=0 �P−�Tc�=0� and the parameter q+

�st� �q−
�st�� vanishes.

In the case where wp�0 and the down state is metastable
in the absence of applied voltage, for the cycles, the polar-
ization parameter of the down state p−

�st� appears to be higher
than that of the up state p+

�st�, p−
�st�� p+

�st�. An important con-
sequence of this is that the switching time + is longer than
−, +�− and �+−−� /Tw�wp /2. So, at wp�0, the model
predicts that, in cycles driven by the square wave voltage,
switching down is faster than switching up. Note that the
results for the reversed sign of wp can be obtained by inter-
changing the up and down states.

C. Sine-wave voltage: Numerical analysis

Now we extend the analysis of the previous section to the
case of sine-wave voltage. The triangular driving voltage can
be treated in just the same way but this involves rather cum-
bersome expressions.

As a first step, we perform integrals in Eq. �45� for the
wave-form function �4� and deduce the expressions for the
functions

R��� = re exp�− �/�w���w cos � + sin ��/�1 + �w
2 � , �66�

R0��� = re�1 − cos ��/�w, � = �w , �67�

where �w=2� /Tw=�tW is the dimensionless frequency pa-
rameter. Substituting Eqs. �66� and �67� into Eqs.
�46a�–�46c� gives the half-period mapping �+ in the follow-
ing parameterized form:

�+: q0 � �w�u0 − 1� = �wp − 1��0 + re�1 − cos �0� � G0
�sine�

	��0� , �68a�

q+ � �w�u+ − 1� = �wp + 1��� − �1� + re�1 + cos �1� � G+
�sine�

	��1� , �68b�

g−��0� = g+��1�, g±��� = exp�− �/�w��wp ± 1� + R��� ,

�68c�

where the parameters �0=�w0 and �1=�w1 are ranged be-
tween zero and �. �Note that the parameters qi differ from
those defined in Sec. III B by the factor �w.�

As opposed to the case of square wave voltage, the pa-
rameters �0 and �1 cannot be eliminated. We begin with lo-
cating the values of these parameters that represent the re-
gime of complete switching where q0 and q+ are non-
negative, q0,+�0.

Our first remark concerns behavior of the functions, G0,+
and g±, that enter the mapping �+. The time derivatives of
these functions

�G0,+��
�

= − 1 ± �wp + r��� , �69�

�g±��
�

= − exp�− ��wp ± 1 + r��� �70�

show that over the first half-period time G+ and g+ are mono-
tonically decreasing functions of .

By contrast, the functions G0 and −g− exhibit nonmono-
tonic behavior. As  increases, they decay reaching the mini-
mum located at min and then grow up to the maximum at
=max decreasing at �max. The points min,max are deter-

mined by the equation Ġ0��=0 �or, equivalently, v��= �1
−wp� /re� and G0�min��0.

For the sine-wave voltage, �min=arcsin��1−wp� /re� and
�max=�−�min. The function G0

�sine� monotonically increases
from G0

�sine���min��0 to G0
�sine���max� and it passes through

zero, G0
�sine���0

�0��=0, before the wave-form function reaches a
maximum only if G0

�sine��� /2��0. The latter provides the
complete switching condition for the driving voltage param-
eter

re � �1 + wp��/2. �71�

Interestingly, replacing re with �re /2 in Eq. �71� recovers the
result for the square wave voltage given by Eq. �55�.

The largest value of �0, �0=�0
�+�, can be found by solving

the coupling equation �68c� at �1=�. Owing to the inequality
�0

�+���0
�0�, the complete switching condition for the fre-

quency is given by

g−��0
�0�� � g+��� . �72�

It can be checked that Eq. �56� with re replaced by 2re /�
provides a good estimate for Tmin defined by the condition
�72�.

At this stage we have found that the end points of the
interval for �0: �0

�0���0��0
�+�, can be evaluated as solutions

of the equations

g−��0
�+�� = g+���, G0

�sine���0
�0�� = 0. �73�

According to the coupling equation �68c�, when �0 increases
from �0

�0� to �0
�+�, the parameter �1 changes from �1

�+� to �. The
equation for �1

�+� is

g+��1
�+�� = g−��0

�0�� . �74�

For the parameters q0 and q+, it can be inferred from the
above results that q+ monotonically decays from q1

�+� to zero
as q0 varies from zero to q0

�+�. The values of q0
�+� and q1

�+� can
be computed from the relations

q0
�+� = G0

�sine���0
�+��, q1

�+� = G+
�sine���1

�+�� , �75�

where �0
�+� and �1

�+� are given in Eqs. �73� and �74�, respec-
tively.
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So, we arrive at the conclusion that the parametrized map-
ping �68� behaves just like the half-period mapping for the
square wave voltage �53a�. In addition, numerical calcula-
tions show that using the formulas �53� as a linear approxi-
mation for the parametrized mappings �+ and �− does not
introduce any noticeable errors. �The relative error is typi-
cally below 10−4.�

It immediately follows that the fixed point condition �57�
and Eq. �61� remain applicable for the sine-wave voltages.
However, the switching time parameters �+ and �− can only
be found numerically by solving Eq. �49� where the relations
�66� and �68a� are used to define the function �43� and to
evaluate the values of �0 for q±

�st�, respectively.
For the most part, qualitative predictions of the model for

the sine-wave voltage remain unaltered as compared to the
case of the square wave voltage. The cycles are found to be
unstable and the condition �58� determines the cycle region.
Despite that the critical period is longer than Tc given by Eq.
�59�, its dependence on the voltage and polar anchoring pa-
rameters is qualitatively the same.

Similar to Eq. �64�, the T-dependence of the parameters
u±

�st� turned out to be approximately linear, whereas the
switching time parameters �± show a weak dependence on
the frequency. The effects of polarity are analogous to those
discussed at the end of Sec. III B.

Thus for all the wave forms under consideration, the fixed
points of the mapping �47� appear to be repelling. This indi-
cates instability of the cycles as the characteristic feature of
the model �35�. It means that initially small deviations from
a cycle will grow in time.

In Ref. �39�, in order to clarify the mechanism of such
instability, we have extended our analysis to the generalized
dynamic model with the double-well potential that can be
regarded as a continuous deformation of the original model
�35� deduced for the anchoring potential �8� taken in the
Rapini-Papoular form. The results of Ref. �39� suggest that
the shape of the effective potential characterizing a uniform
model may have a profound effect on the properties of the
periodic switching regimes. In particular, it was found that
the branch of stable cycles emerges even at small deforma-
tions of the potential. In Sec. V we shall discuss some of the
results at greater length.

IV. EXPERIMENT

In this section we present the experimental results on fre-
quency dependence of the threshold voltages measured in
asymmetric SSFLC cells. It is found that the asymmetry in-

duced shift of the hysteresis loop increases with the driving
frequency. We apply the theoretical results of Sec. III to
model the process of switching within the cells and to esti-
mate the polar anchoring parameter from the experimental
data.

A. Sample preparation

In our experiments we used asymmetric FLC cells where
the FLC layer is sandwiched between two dissimilar sub-
strates. One of the substrates was covered with a photoalign-
ing substance, the azobenzene sulfric dye SD-1, whereas the
other one was simply washed in N ,N-dimethylformamide
�DMF� and covered with calibrated spacers. By contrast, the
substrates with photoaligned films identical in anchoring
properties were assembled to form symmetric FLC cells.

Following the procedure described in Ref. �40�, SD-1 was
synthesized from corresponding benzidinedisulfonic acid us-
ing azo coupling. The solution was spin-coated onto glass
substrates with indium-tin-oxide �ITO� electrodes at 800 rpm
for 5 s and, subsequently, at 3000 rpm for 30 s. The solvent
was evaporated on a hot plate at 140 °C for 10 min.

The surface of the coated film was illuminated with lin-
early polarized UV light using a super-high-pressure Hg
lamp through an interference filter at the wavelength 365 nm
and a polarizing filter. The intensity of light irradiated nor-
mally on the film surface during 30 min was 6 mW/cm2.

We used two different pitch-compensated liquid crystal
mixtures: FLC-497 and FLC-510 �from P. N. Lebedev Physi-
cal Institute of Russian Academy of Sciences� as materials
for the FLC layer. The mixtures were injected into the cells
in the isotropic phase by capillary action at T=85 and
100 °C for FLC-497 and FLC-510, respectively. In these
mixtures, the FLC helix is unwound due to compensation by
two chiral dopants with opposite sense of chirality �opposite
sign of handedness� but the same sign of the spontaneous
polarization �41�. The parameters of the mixtures are listed in
Table I.

B. Experimental results and modeling

Measurements of the hysteresis loops were performed us-
ing the standard electro-optical setup composed of a He-Ne
laser, a Hewlett Packard Infinum digital oscilloscope, and a
generator of triangular pulses. We also used a rotating table
for adjusting the angular position of the FLC cell placed
between crossed polarizers. The voltage amplitude of the
generator, Vm, used in all experiments was 10 V and the

TABLE I. Parameters of the FLC mixtures measured in the Sm-C* phase at 23 °C.

Mixture name Phase sequence
PS

�nC/cm2�

Tilt angle
�

�deg�

Viscosity
�

�Pa s�

FLC-497
Cr ——→

4 °C

Sm-C* ——→
57 °C

Sm-A* ——→
76 °C

Iso
95 27 0.11

FLC-510
Cr ——→

2 °C

Sm-C* ——→
71 °C

Sm-A* ——→
99 °C

Iso
98 31 0.18
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driving voltage frequency can be varied in the range from
10−3 to 103 Hz.

Figure 3 schematically represents the form of a typical
hysteresis loop measured in our experiments. The threshold
voltages, V±, and the corresponding values of the switching
voltage parameters, v±= ±V± /Vm, then can be extracted from
the experimental data for the electro-optic hysteresis loops.
For asymmetric cells filled with FLC-510 and FLC-497, the
results shown in Fig. 6 clearly indicate the difference be-
tween the voltage parameters for switching up and down, v+
and v−. Therefore the hysteresis loops are shifted. By con-
trast, for symmetric cells, the shift, v+−v−, is found to be
vanishing within the limits of experimental error.

The curves presented in Fig. 6 were measured in the cells
where the thickness of the FLC layer, d, and of the aligning
film, dA, was 5 �m and 12nm, respectively. In our previous
papers �42–44�, we studied anchoring properties of the azo-
dye films and our experimental technique can be applied to
measure the strength of anchoring W in FLC cells. It was
estimated to be about 2	10−4 and 1.2	10−4 J m−2 in the
cells filled with FLC-510 and FLC-497, respectively.

The characteristic times tE and tW given in Eq. �20� can
now be estimated as follows: tE�0.9	10−4 s and tW�4.5
	10−3 s for the FLC-510 cell; tE�0.58	10−4 s and tW
�4.58	10−3 s for the FLC-497 cell. The corresponding val-
ues of the driving voltage parameter are re�50 and �79.

The above estimates define the parameters that enter the
dynamic equation �21� of the model discussed in Sec. II A.
In this model the director field �1� is assumed to be uniform
across the cell. Such an assumption can be a reasonable ap-
proximation in the high field regime of switching. For square
wave voltages, this is the case in which the characteristic
length �E= �K / PSE0�1/2, where K is the effective elastic con-
stant, is shorter than the cell thickness, �E�d. From the es-
timate �E�0.07 �m�d=5.0 �m obtained using a typical
value of the elastic constant, K�10−11 J m−1, it might be
concluded that the uniform model can be safely used to in-
terpret the experimental results. For triangular and sinusoidal
wave forms, the above estimate means that the inequality
�E�d is satisfied during most of the driving voltage period.

We can also estimate the anchoring extrapolation length
�W=K /W�0.05−0.08 �m, so that the characteristic lengths
�E and �W are of the same order. Therefore the anchoring
conditions at the boundary surfaces described by the anchor-
ing energy could play an important part in the switching
dynamics.

In Sec. II A, we found the expression for the electric field
inside the FLC layer �15� which differ from the external
electric field due to the presence of the insulating aligning
film. This effect crucially depends on the value of the dimen-
sionless parameter � defined in Eq. �13� that, in our case, can
be estimated by assuming that d2=0, d1=dA=12 nm, and
�1=�A�7.5 is the dielectric constant of the SD-1 layer. For
both FLC-510 and FLC-497 cells, we obtain small values of
� that are below 5	10−4. As a result, even a rough estimate
for the depolarizing voltage Vdep� PSdA / ��A�0��0.16 V de-
rived from Eq. �15� yields the voltages an order of magnitude
lower than typical values of the voltage shift measured in our
experiments. In addition, a more accurate analysis of the
contributions to the effective electrostatic free energy �16�
clearly shows that the voltage drop across the aligning layer
cannot be responsible for asymmetry of the switching volt-
age thresholds, V+�V−.

The method developed in Sec. III can now be applied to
model switching dynamics of the FLC cells using the experi-
mental results. To this end we calculated the parameters u±
characterizing the polarization of the up and down states
from the data on frequency dependence of the switching
voltage parameters v±. This procedure involves solving Eq.
�49� and using the half-period mapping �46� for the triangu-
lar wave-form function �5�. The mapping �+ ��−� is used to
compute the parameters u± for switching up �down� from the
data on the switching voltage v+ �v−�.

In general, the computed values of u± for switching up
deviate from the corresponding results for switching down.
We used the polar anchoring parameter wp as a fitting param-
eter to minimize the difference and to obtain the results near-
est to the cycle. For the FLC-510 cell, the value of wp is
found to be about −0.65 and we present the results for the
parameters �u±−1�fw in Fig. 7. Referring to Fig. 7, there are
two frequency regions where, similar to cycles, the fre-
quency dependence of �u±−1�fw is nearly linear. Using linear
approximation for the parameters �u±−1�fw we estimated the
boundary frequency separating the low and high frequency
regions at about 16 Hz and calculated the curves for the
switching voltage parameters shown in Fig. 8�a� as solid
lines.

The switching voltage vs frequency curves computed
along the same lines for the FLC-497 cell are given in Fig.
8�b�. In this case, the polar anchoring parameter is found to
be about −0.78. From Fig. 9�a� it can be seen that the linear
approximation in the high frequency region reproduces the
experimental data for the voltage coercitivity remarkably
well. The scatter in the data and its scale are more evident in
the results for the voltage shift shown in Fig. 9�b�.

Despite good agreement between the theoretical and the
experimental results, it is essential that the linearly fitted
data, strictly speaking, do not represent the cycle and the
modeling was only performed over the first period. Since the
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FIG. 6. �Color online� Experimental curves for switching volt-
age parameters, v±= ±V± /Vm, measured as a function of frequency
in the cells filled with �a� FLC-510 and �b� FLC-497.
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cycles are unstable, evolution in time will have the deterio-
ration effect on the agreement between modeling and mea-
surements.

V. DISCUSSION AND CONCLUSIONS

In this paper we have studied how the dynamical charac-
teristics of switching in SSFLC cells are affected by asym-
metry of dissimilar substrates in anchoring properties. The
asymmetry effects are found to be dominated by the polar
contribution to the anchoring energy and manifest them-

selves in the frequency dependent shift of the hysteresis
loop.

Our theoretical considerations were primarily concerned
with the predictions of the uniform theory on the frequency
dependence of the switching voltage thresholds �the switch-
ing voltage parameters�. It was assumed that the steady state
regime of switching is determined by the cycles which are
time-periodic solutions to the dynamic equation. So, we have
developed the method to analyze the properties of cycles
depending on the driving frequency. In this method the dy-
namic equation for the angular variable �25� is approximated
to yield the half-period mappings in the parametrized form.
The cycles are then studied in terms of the fixed points of the
composition of two half-period mappings.

By using this method we have performed analyses for the
cases of square wave, sine-wave, and triangular voltages. It
was found that the cycles are unstable and can only be
formed when the driving frequency is lower than its critical
value, f � fc=1/Tc. The critical frequency fc declines with
the polar anchoring parameter wp suppressing the cycles at
wp=1.

The polar anchoring breaks the mirror symmetry relating
the processes of switching up and down leading to the dif-
ference in the magnitude of the corresponding switching
time and switching voltage parameters. So, we have +�−
and v+�v− at nonvanishing polar anchoring parameter, wp
�0. Therefore the shift of the hysteresis loop, v+−v−, results
from the symmetry breaking effect caused by the polar con-
tribution to the anchoring potential �8� characterized by the
polar anchoring parameter �9�.

Our calculations indicate that, for cycles, dependence of
the parameters u±

�st� /T and ± /T on the frequency is nearly
linear. Modeling of the switching dynamics using the experi-
mental data revealed similar behavior provided the frequency
is not too low. Since the conductivity of the FLC layer has
been neglected in the electrostatic model discussed in Sec.
II A, we cannot expect the model to give accurate results at
low frequencies.

The expression for the effective electrostatic potential
�16� shows that there are no symmetry breaking contribu-
tions due to the voltage drop across the insulating aligning
films and the dielectric anisotropy of the FLC layer. So, they
cannot be responsible for the asymmetry effects under con-
sideration. Thus we may conclude that the anchoring energy
is the determining factor in this problem. Of interest is the
fact that a similar conclusion underlines the method pro-
posed in �45� to control the process of switching.

One of the most important above results is that the fixed
points describing the periodic regimes of response of peri-
odically driven FLC cells are repelling. Therefore the model
�37� predicts instability of the cycles.

Such instability can be assumed to be a characteristic of
the model with the potential taken in the standard Rapini-
Papoular form �25�. Interestingly, our analytical approach
can be used to demonstrate that the shape of the anchoring
potential may affect the switching dynamics significantly
�39�.

To this end, we have studied the generalized model with
the governing equation
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FIG. 7. �Color online� Frequency dependence of parameters �a�
�u−−1� /Tw and �b� �u+−1� /Tw computed from the experimental
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�u

�
� u̇ = −

�U�u�
�u

+ r��, U�u� = U0�u� − wpu , �76�

where the anchoring energy potential U0 is taken to be a
piecewise quadratic function of the following form:

U0�u� = ��−u2/2 + �1 + �−��u + 1/2� , u � − 1,

− u2/2, − 1 � u � 1,

�+u2/2 − �1 + �+��u − 1/2� , u � 1.
�

�77�

Referring to Fig. 10, the effective potential U�u� defined in
Eqs. �76� and �77� represents a double-well potential with the
two minima located at umin

�+� = �1+�++wp� /�+ and umin
�−� =−�1

+�−−wp� /�−.
Clearly, our original model �37� can be regarded as the

limiting case of the modified model �76� in which the param-
eters �± are equal to zero, �±=0. In this limit, the parameters
umin

�±�  become infinitely large and the minima shift at infinity
in opposite directions.

The key results obtained in Ref. �39� for square wave
voltage at �±=� can be summarized as follows.

�a� There are two limiting frequencies, f1 and f2,

f1,2 � 2−1�re�1 − wp + 2� � ��1 − wp�2 − 4�wp�−1,

�78�

so that the cycles are unstable at f2� fw� f1.
�b� Unstable cycles can only be formed if the separation

between the minima of the effective potential is sufficiently
large and ���c, where

�c � wp−1�1 − wp�2�2 − �1 + wp�2re
−2�/8. �79�

�c� When ���c, in addition to unstable cycles, there is the
branch of stable cycles in the low frequency region below the
critical frequency fc, fw� fc:
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fc � 2−1�re�1 + wp + 2� + ��1 + wp�2 + 4�wp�−1.

�80�

�d� At wp�0, the low frequency region is separated from the
frequency interval of unstable cycles by the gap of the width
f2− fc.

These results suggest that the periodic regimes of switch-
ing are sensitive to the shape of the anchoring potential
which plays an important part in the mechanism rendering
the cycles unstable. In our case this is the Rapini-Papoular
potential that predicts no stable cycles. Such instability, how-
ever, may imply that the potential fails to describe large de-
viations of the director from the easy axis in the course of the
switching process. For similar reasons, modifications of the
potential were considered in very recent studies on the dy-
namics of a pitch jump in cholesteric liquid crystal cells
�46,47�.

Note that, similar to Eqs. �64� and �65�, the expressions
�78�–�80� are simplified so as to give the asymptotic formu-
las in the high voltage region with re�10. For brevity we

have dropped a detailed analysis and an extended discussion
that can be found in Ref. �39�.

The uniform theory cannot be directly applied to more
complicated cases with spatially inhomogeneous orienta-
tional structures involved. The problems such as the soliton
�kink� mechanism of switching �48–50� and dynamics in the
chevron geometry �51,52� generally require using a more
comprehensive approach going beyond the scope of the uni-
form theory. Nevertheless, it is pertinent to note that, under
certain circumstances, the switching dynamics of inhomoge-
neous structures can be effectively reduced to a uniform
model for relevant spatially independent variables using a
trial solution in the first approximation. So, we hope that the
results of this paper will stimulate further progress in the
field.
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